BME 372 New

Lecture \#1

Electrical Basics

Circuit Analysis

- Circuit Elements
- Passive Devices
- Active Devices
- Circuit Analysis Tools
- Ohms Law
- Kirchhoff's Law
- Impedances
- Mesh and Nodal Analysis
- Superposition
- Examples

Characterize Circuit Elements

- Passive Devices: dissipates or stores energy
- Linear
- Non-linear
- Active Devices: Provider of energy or supports power gain
- Linear
- Non-linear

Circuit Elements - Linear Passive Devices

- Linear: supports a linear relationship between the voltage across the device and the current through it.
- Resistor: supports a voltage and current which are proportional, device dissipates heat, and is governed by Ohm's Law, units: resistance or ohms Ω

$V_{R}(t)=I_{R}(t) R$ where R is the value of the resistance associated with the resistor

Circuit Elements - Linear Passive Devices

- Capacitor: supports a current which is proportional to its changing voltage, device stores an electric field between its plates, and is governed by Gauss' Law, units: capacitance or farads, f

$I_{C}(t)=C \frac{d V_{C}(t)}{d t}$ where C is the value of the capacitance associated with the capacitor

Circuit Elements - Linear Passive Devices

- Inductor: supports a voltage which is proportional to its changing current, device stores a magnetic field through its coils and is governed by Faraday's Law, units: inductance or henries, h

$V_{L}(t)=L \frac{d I_{L}(t)}{d t}$ where L is the value of the inductance associated with the inductor

Circuit Elements - Passive Devices Continued

- Non-linear: supports a non-linear relationship among the currents and voltages associated with it
- Diodes: supports current flowing through it in only one direction

Circuit Elements - Active Devices

- Linear
- Sources
- Voltage Source: a device which supplies a voltage as a function of time at its terminals which is independent of the current flowing through it, units: Volts

- DC, AC, Pulse Trains, Square Waves, Triangular Waves
- Current Source: a device which supplies a current as a function of time out of its terminals which is independent of the voltage across it, units: Amperes

- DC, AC, Pulse Trains, Square Waves, Triangular Waves

Circuit Elements - Active Devices
 Continued
 - Ideal Sources vs Practical Sources

- An ideal source is one which only depends on the type of source (i.e., current or voltage)
- A practical source is one where other circuit elements are associated with it (e.g., resistance, inductance, etc.)
- A practical voltage source consists of an ideal voltage source connected in series with passive circuit elements such as a resistor
- A practical current source consists of an ideal current source connected in parallel with passive circuit elements such as a resistor

Circuit Elements - Active Devices

Continued

- Independent vs Dependent Sources

- An independent source is one where the output voltage or current is not dependent on other voltages or currents in the device
- A dependent source is one where the output voltage or current is a function of another voltage or current in the device (e.g., a BJT transistor may be viewed as having an output current source which is dependent on the input current)

Circuit Elements - Active Devices
 Continued

- Non-Linear
- Transistors: three or more terminal devices where its output voltage and current characteristics are a function on its input voltage and/or current characteristics, several types BJT, FETs, etc.

Circuits

- A circuit is a grouping of passive and active elements
- Elements may be connecting is series, parallel or combinations of both

Circuits Continued

- Series Connection: Same current through the devices
- The resultant resistance of two or more Resistors connected in series is the sum of the resistance
- The resultant inductance of two or more Inductors connected in series is the sum of the inductances
- The resultant capacitance of two or more Capacitors connected in series is the inverse of the sum of the inverse capacitances
- The resultant voltage of two or more Ideal Voltage Sources connected in series is the sum of the voltages
- Two of more Ideal Current sources can not be connected in series

Series Circuits

- Resistors
- Inductors
- Capacitors

$$
\begin{aligned}
& R_{T}=R_{I}+R_{2}=I\left(R_{1}+R_{2}\right)=I R_{T}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(L_{1}+L_{2}\right) \frac{d I}{d t}=L_{T} \frac{d I}{d t} \\
& V_{a c}=V_{a b}+V_{b c}=\frac{1}{C_{1}} \int I d t+\frac{1}{C_{2}} \int I d t \\
& C_{T}=\frac{1}{\frac{1}{C_{1}}+\frac{1}{C_{2}}}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \int I d t=\frac{1}{C_{T}} \int I d t
\end{aligned}
$$

Series Circuits

- Resistors

$$
\begin{gathered}
\quad \stackrel{a}{a} 20{ }_{b} 50 \Omega{ }_{c} \\
R_{T}=20+50=70 \Omega \\
V_{a c}= \\
=V_{a b}+V_{b c}=I 20+I 50 \\
=I(20+50)=I 70
\end{gathered}
$$

Series Circuits

- Inductors

$$
\begin{aligned}
& L_{T}=25+100=125 h \\
& V_{a c}=V_{a b}+V_{b c}=25 \frac{d I}{d t}+100 \frac{d I}{d t} \\
& =(25+100) \frac{d I}{d t}=125 \frac{d I}{d t}
\end{aligned}
$$

Series Circuits

- Capacitors

$$
\begin{gathered}
C_{T}=\frac{1}{\frac{1}{5}+\frac{1}{10}}=\frac{5 \times 10}{5+10}=\frac{50}{15}=\frac{10}{3}=3.33 f \\
V_{a c}=V_{a b}+V_{b c}=\frac{1}{5} \int I d t+\frac{1}{10} \int I d t \\
=\left(\frac{1}{5}+\frac{1}{10}\right) \int I d t=\frac{3}{10} \int I d t
\end{gathered}
$$

Series Circuits

- Capacitors

$$
\begin{gathered}
C_{T}=\frac{1}{\frac{1}{10}+\frac{1}{10}}=\frac{10 \times 10}{10+10}=\frac{100}{20}=\frac{10}{2}=5 f \\
V_{a c}=V_{a b}+V_{b c}=\frac{1}{10} \int I d t+\frac{1}{10} \int I d t \\
\quad=\left(\frac{1}{10}+\frac{1}{10}\right) \int I d t=\frac{2}{10} \int I d t=\frac{1}{5} \int I d t
\end{gathered}
$$

Circuits Continued

- Parallel Connection: Same Voltage across the devices
- The resultant resistance of two or more Resistors connected in parallel is the inverse of the sum of the inverse resistances
- The resultant inductance of two or more Inductors connected in parallel is the inverse of the sum of the inverse inductances
- The resultant capacitance of two or more Capacitors connected in parallel is the sum of the capacitances
- The resultant current of two or more Ideal Current Sources connected in parallel is the sum of the currents
- Two of more Ideal Voltage sources can not be connected in parallel

Parallel Circuits

- Resistors $R_{T}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}$

$$
\begin{aligned}
I_{a b} & =I_{1}+I_{2}=\frac{V}{R_{1}}+\frac{V}{R_{2}} \\
& =\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) V=\frac{V}{R_{T}}
\end{aligned}
$$

- Inductors $L_{T}=\frac{1}{\frac{1}{L_{1}}+\frac{1}{L_{2}}}=\frac{L_{1} L_{2}}{L_{1}+L_{2}} I_{1} \underbrace{}_{2}$
- Capacitors $C_{T}=C_{1}+C_{2} \quad I_{1} \downarrow \frac{C_{1}}{} I_{2} \downarrow C_{2}=\left(C_{1}+C_{2}\right) \frac{d V}{d t}=C_{T} \frac{d V}{d t}$

Combining Circuit Elements Kirchhoff's Laws

- Kirchhoff Voltage Law: The sum of the voltages around a loop must equal zero
- Kirchhoff Current Law: The sum of the currents leaving (entering) a node must equal zero

Combining Rs, Ls and Cs

- We can use KVL or KCL to write and solve an equation associated with the circuit.
- Example: a series Resistive Circuit

$$
\begin{aligned}
& \text { Using KVL } \\
& \begin{array}{l}
V(t)=I(t) R_{l}+I(t) R_{2} \\
V(t)=I(t)\left(R_{1}+R_{2}\right)
\end{array}
\end{aligned}
$$

Combining Rs, Ls, and Cs

- We can use KVL or KCL to write and solve an equation associated with the circuit.
- Example: a series Resistive Circuit

Using KCL:
$I_{1}+I_{2}+I_{3}=0 \Rightarrow I_{1}=-I_{2}-I_{3}$
But
$I_{2}=-\frac{V(t)}{R_{1}} ; I_{3}=-\frac{V(t)}{R_{2}}$

Therefore,
$I_{1}=-I_{2}-I_{3}=\frac{V(t)}{R_{1}}+\frac{V(t)}{R_{2}}=\left[\frac{1}{R_{1}}+\frac{1}{R_{2}}\right] V(t)$

Impedances

- Our special case, signals of the form: $V(t)$ or $I(t)=A e^{s t}$ where s can be a real or complex number

$$
V(t)=I(t) R_{1}+L_{1} \frac{d I(t)}{d t}+\frac{1}{C_{1}} \int I(t) d t
$$

Let's assume:
$V(t)=10 e^{5 t} ; R_{1}=10 \Omega ; L_{1}=5 h ; C_{1}=.2 f$
Let's try :
$I(t)=A e^{5 t}$

- This is only one portion of the solution and does not include the transient response.

Impedances

- Our special case, signals of the form: $V(t)$ or $I(t)=A e^{s t}$ where s can be a real or complex number

$$
\begin{aligned}
& 10 e^{5 t}=I(t) 10+5 \frac{d I(t)}{d t}+\frac{1}{.2} \int I(t) d t \\
& 10 e^{5 t}=A e^{5 t} 10+5 \frac{d A e^{5 t}}{d t}+5 \int A e^{5 t} d t \\
& 10 e^{5 t}=A\left(e^{5 t} 10+5 \times 5 e^{5 t}+\frac{5 e^{5 t}}{5}\right) \\
& \quad=A\left(e^{5 t} 36\right) \\
& A=\frac{10}{36} ; I(t)=\frac{10}{36} e^{5 t}
\end{aligned}
$$

- This is only one portion of the solution and does not include the transient response.

Impedances

- Since the derivative [and integral] of $A e^{s t}=$ $s A e^{s t}\left[=(1 / s) A e^{s t}\right]$, we can define the impedance of a circuit element as $Z(s)=V / I$ where Z is only a function of s since the time dependency drops out.

Impedances

For an inductor, let's assume $I(t)=A e^{s t}$;
then $\quad V_{L}(t)=L \frac{d I(t)}{d t}=L s A e^{s t}$;
$Z(s)=\frac{V_{L}}{I}=\frac{s L A e^{s t}}{A e^{s t}}=s L$
For a capacitor, let's assume $V(t)=A e^{s t}$;

then $I(t)=C \frac{d V_{C}(t)}{d t}=C s A e^{s t}$;
$Z(s)=\frac{V_{C}}{I}=\frac{A e^{s t}}{s C A e^{s t}}=\frac{1}{s C}$
For a resistor, let's assume $I(t)=A e^{s t}$;
then $V_{R}(t)=R I(t)=R A e^{s t}$;
$Z(s)=\frac{V_{R}}{I}=\frac{R A e^{s t}}{A e^{s t}}=R$

Impedances

- What about signals of the type: $\cos (\omega t+\theta)$;
- Recall Euler's formula $e^{j \theta}=\cos \theta+j \sin \theta$ where j is the imaginary number $=\sqrt{-1}$
- A special case of our special case is for sinusoidal inputs, where $s=j \omega$

Sinusoidal Steady State Continued

- For an inductor, $Z_{L}=j \omega L \Rightarrow \omega L \angle \frac{\pi}{2}$
- For a capacitor, $Z_{C}=\frac{1}{j \omega C} \Rightarrow \frac{1}{\omega C} \angle-\frac{\pi}{2}$.
- For a resistor, $Z_{R}=R \Rightarrow R \angle 0$

Sinusoidal Steady State Continued

For $V(t)=A \cos \omega t$, using phasor notation for
$V(t) \rightarrow \mathbf{V}=A \angle 0$ and $I(t) \rightarrow \mathbf{I}$, our equation can be rewritten:

$$
V(t)=I(t) R_{1}+L_{1} \frac{d I(t)}{d t}+\frac{1}{C_{1}} \int I(t) d t
$$

Converting to Phasor representation

$$
\mathbf{V}=A \angle 0=\mathbf{I} R_{1}+j \omega L_{\mathbf{1}} \mathbf{I}+\frac{1}{j \omega C_{1}} \mathbf{I}
$$

Sinusoidal Steady State Continued

$$
\mathbf{I}=\frac{A \angle 0}{R_{1}+j \omega L_{1}+\frac{1}{j \omega C_{1}}}=\frac{A \angle 0}{R_{1}+j\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)}=\frac{A}{\sqrt{R_{1}^{2}+\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)^{2}}} \angle-\tan ^{-1}\left[\frac{\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)}{R_{1}}\right]
$$

Converting back to the time representation,

$$
I(t)=\frac{A}{\sqrt{R_{1}^{2}+\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)^{2}}} \cos \left(\omega t-\tan ^{-1}\left[\frac{\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)}{R_{1}}\right]\right)
$$

Bode Plots

- Plotting the magnitude and phase versus frequency.

$$
\begin{aligned}
& \mathbf{I}=\frac{A}{\sqrt{R_{1}^{2}+\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)^{2}}} \angle-\tan ^{-1}\left[\frac{\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)}{R_{1}}\right] \\
& \text { Magnitude of } \mathrm{I} \Rightarrow|\mathbf{I}|=\frac{A}{\sqrt{R_{1}^{2}+\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)^{2}}} \\
& \text { Angle of } \mathrm{I} \Rightarrow \angle \mathbf{I}=\angle-\tan ^{-1}\left[\frac{\left(\omega L_{1}-\frac{1}{\omega C_{1}}\right)}{R_{1}}\right]
\end{aligned}
$$

Bode Plots

- Easy way to plot the magnitude.

$$
\mathbf{I}=\frac{A}{R_{1}+j \omega L_{1}+\frac{1}{j \omega C_{1}}}
$$

First evaluate at the initial condition $\omega=0$
$\left.\mathbf{I}\right|_{\omega=0}=\left.\frac{A}{R_{1}+j \omega L_{1}+\frac{1}{j \omega C_{1}}}\right|_{\omega=0} \rightarrow \frac{A}{R_{1}+j 0 L_{1}+\frac{1}{j 0 C_{1}}} \quad$ Determine the dominate terms $\frac{A}{\frac{1}{j 0 C_{1}}} \rightarrow j \frac{A}{\infty} \rightarrow 0 \angle \frac{\pi}{2}$
Next evaluate at the final condition $\omega \rightarrow \infty$

$$
\left.\mathbf{I}\right|_{\omega \rightarrow \infty}=\left.\frac{A}{R_{1}+j \omega L_{1}+\frac{1}{j \omega C_{1}}}\right|_{\omega \rightarrow \infty} \rightarrow \frac{A}{R_{1}+j \infty L_{1}+\frac{1}{j \infty C_{1}}} \text { Determine the dominate terms } \frac{A}{j \infty L_{1}} \rightarrow-j \frac{A}{\infty} \rightarrow 0 \angle-\frac{\pi}{2}
$$

Find an interesting point; for this example choose $\omega=\omega_{0}=\frac{1}{\sqrt{L C}}$ since this is when the imaginary part of the deminator is zero.

$$
\left.\mathbf{I}\right|_{\omega_{0}=\frac{1}{\sqrt{L C}}}=\left.\frac{A}{R_{1}+j \omega L_{1}+\frac{1}{j \omega C_{1}}}\right|_{\omega_{0}=\frac{1}{\sqrt{L_{1} C_{1}}}}=\frac{A}{R_{1}+j\left(\frac{1}{\sqrt{L_{1} C_{1}}} L_{1}-\frac{1}{\frac{1}{\sqrt{L_{1} C_{1}}} C_{1}}\right)}=\frac{A}{R_{1}+j\left(\sqrt{\frac{L_{1}}{C_{1}}}-\frac{1}{\sqrt{\frac{C_{1}}{L_{1}}}}\right)}=\frac{A}{R_{1}}=\frac{A}{R_{1}} \angle 0
$$

Bode Plots

- With the three point, plots can be made

Homework

Find the total resistance

Homework

Find the total resistance $R_{a b}$ where
$R_{1}=3 \Omega, R_{2}=6 \Omega, R_{3}=12 \Omega, R_{4}=4 \Omega, R_{5}=2 \Omega, R_{6}=2 \Omega, R_{7}=4 \Omega, R_{8}=4 \Omega$

Homework

Find the total resistance $R_{a b}$ where

$$
R_{1}=2 \Omega, R_{2}=4 \Omega, R_{3}=2 \Omega, R_{4}=2 \Omega, R_{5}=2 \Omega, R_{6}=4 \Omega,
$$

Homework

Find the total resistance $R_{a b}$ for this infinite resistive network

Find the total capacitance

Homework

Find and plot the impedance $Z_{a b}(j \omega)$ as a function of frequency. Use Matlab to calculate the Bode plot.

Homework

Find and plot the impedance $Z_{a b}(j \omega)$ as a function of frequency. Use Matlab to calculate the Bode plot.

Find and plot the impedance $Z_{a b}(j \omega)$ as function of ω. Use Matlab to calculate the Bode plot.

